# 程序代写代做代考 ER assembler cache mips Card-P374493.indd

Card-P374493.indd

M I P S Reference Data

BASIC INSTRUCTION FORMATS

REGISTER NAME, NUMBER, USE, CALL CONVENTION

CORE INSTRUCTION SET OPCODE

NAME, MNEMONIC
FOR-
MAT OPERATION (in Verilog)

/ FUNCT
(Hex)

Add add R R[rd] = R[rs] + R[rt] (1) 0 / 20hex
Add Immediate addi I R[rt] = R[rs] + SignExtImm (1,2) 8hex
Add Imm. Unsigned addiu I R[rt] = R[rs] + SignExtImm (2) 9hex
Add Unsigned addu R R[rd] = R[rs] + R[rt] 0 / 21hex
And and R R[rd] = R[rs] & R[rt] 0 / 24hex
And Immediate andi I R[rt] = R[rs] & ZeroExtImm (3) chex

Branch On Equal beq I
if(R[rs]==R[rt])

4hex

Branch On Not Equalbne I
if(R[rs]!=R[rt])

5hex

Jump j J PC=JumpAddr (5) 2hex
Jump And Link jal J R[31]=PC+8;PC=JumpAddr (5) 3hex
Jump Register jr R PC=R[rs] 0 / 08hex

Load Byte Unsigned lbu I
R[rt]={24’b0,M[R[rs]
+SignExtImm](7:0)} (2)

24hex

Unsigned

lhu I
R[rt]={16’b0,M[R[rs]
+SignExtImm](15:0)} (2)

25hex

Load Linked ll I R[rt] = M[R[rs]+SignExtImm] (2,7) 30hex
Load Upper Imm. lui I R[rt] = {imm, 16’b0} fhex
Load Word lw I R[rt] = M[R[rs]+SignExtImm] (2) 23hex
Nor nor R R[rd] = ~ (R[rs] | R[rt]) 0 / 27hex
Or or R R[rd] = R[rs] | R[rt] 0 / 25hex
Or Immediate ori I R[rt] = R[rs] | ZeroExtImm (3) dhex
Set Less Than slt R R[rd] = (R[rs] < R[rt]) ? 1 : 0 0 / 2ahex Set Less Than Imm. slti I R[rt] = (R[rs] < SignExtImm)? 1 : 0 (2) ahex Set Less Than Imm. Unsigned sltiu I R[rt] = (R[rs] < SignExtImm) ? 1 : 0 (2,6) bhex Set Less Than Unsig. sltu R R[rd] = (R[rs] < R[rt]) ? 1 : 0 (6) 0 / 2bhex Shift Left Logical sll R R[rd] = R[rt] << shamt 0 / 00hex Shift Right Logical srl R R[rd] = R[rt] >> shamt 0 / 02hex

Store Byte sb I
M[R[rs]+SignExtImm](7:0) =
R[rt](7:0) (2)

28hex

Store Conditional sc I
M[R[rs]+SignExtImm] = R[rt];
R[rt] = (atomic) ? 1 : 0 (2,7)

38hex

Store Halfword sh I
M[R[rs]+SignExtImm](15:0) =
R[rt](15:0) (2)

29hex

Store Word sw I M[R[rs]+SignExtImm] = R[rt] (2) 2bhex
Subtract sub R R[rd] = R[rs] – R[rt] (1) 0 / 22hex
Subtract Unsigned subu R R[rd] = R[rs] – R[rt] 0 / 23hex

(1) May cause overflow exception
(2) SignExtImm = { 16{immediate[15]}, immediate }
(3) ZeroExtImm = { 16{1b’0}, immediate }

(5) JumpAddr = { PC+4[31:28], address, 2’b0 }

(7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic

R opcode rs rt rd shamt funct
31 26 25 21 20 16 15 11 10 6 5 0

I opcode rs rt immediate
31 26 25 21 20 16 15 0

31 26 25 0

ARITHMETIC CORE INSTRUCTION SET OPCODE

NAME, MNEMONIC
FOR-
MAT OPERATION

/ FMT /FT
/ FUNCT

(Hex)
Branch On FP True bc1t FI if(FPcond)PC=PC+4+BranchAddr (4) 11/8/1/–
Branch On FP False bc1f FI if(!FPcond)PC=PC+4+BranchAddr(4) 11/8/0/–
Divide div R Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] 0/–/–/1a
Divide Unsigned divu R Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6) 0/–/–/1b
FP Add Single add.s FR F[fd ]= F[fs] + F[ft] 11/10/–/0
Double

{F[fd],F[fd+1]} = {F[fs],F[fs+1]} +
{F[ft],F[ft+1]}

11/11/–/0

FP Compare Single c.x.s* FR FPcond = (F[fs] op F[ft]) ? 1 : 0 11/10/–/y
FP Compare
Double

c.x.d* FR
FPcond = ({F[fs],F[fs+1]} op
{F[ft],F[ft+1]}) ? 1 : 0

11/11/–/y

* (x is eq, lt, or le) (op is ==, <, or <=) ( y is 32, 3c, or 3e) FP Divide Single div.s FR F[fd] = F[fs] / F[ft] 11/10/--/3 FP Divide Double div.d FR {F[fd],F[fd+1]} = {F[fs],F[fs+1]} / {F[ft],F[ft+1]} 11/11/--/3 FP Multiply Single mul.s FR F[fd] = F[fs] * F[ft] 11/10/--/2 FP Multiply Double mul.d FR {F[fd],F[fd+1]} = {F[fs],F[fs+1]} * {F[ft],F[ft+1]} 11/11/--/2 FP Subtract Single sub.s FR F[fd]=F[fs] - F[ft] 11/10/--/1 FP Subtract Double sub.d FR {F[fd],F[fd+1]} = {F[fs],F[fs+1]} - {F[ft],F[ft+1]} 11/11/--/1 Load FP Single lwc1 I F[rt]=M[R[rs]+SignExtImm] (2) 31/--/--/-- Load FP Double ldc1 I F[rt]=M[R[rs]+SignExtImm]; (2) F[rt+1]=M[R[rs]+SignExtImm+4] 35/--/--/-- Move From Hi mfhi R R[rd] = Hi 0 /--/--/10 Move From Lo mflo R R[rd] = Lo 0 /--/--/12 Move From Control mfc0 R R[rd] = CR[rs] 10 /0/--/0 Multiply mult R {Hi,Lo} = R[rs] * R[rt] 0/--/--/18 Multiply Unsigned multu R {Hi,Lo} = R[rs] * R[rt] (6) 0/--/--/19 Shift Right Arith. sra R R[rd] = R[rt] >>> shamt 0/–/–/3
Store FP Single swc1 I M[R[rs]+SignExtImm] = F[rt] (2) 39/–/–/–
Store FP
Double

sdc1 I
M[R[rs]+SignExtImm] = F[rt]; (2)
M[R[rs]+SignExtImm+4] = F[rt+1]

3d/–/–/–

FR opcode fmt ft fs fd funct
31 26 25 21 20 16 15 11 10 6 5 0

FI opcode fmt ft immediate
31 26 25 21 20 16 15 0

NAME MNEMONIC OPERATION
Branch Less Than blt if(R[rs]R[rt]) PC = Label
Branch Less Than or Equal ble if(R[rs]<=R[rt]) PC = Label Branch Greater Than or Equal bge if(R[rs]>=R[rt]) PC = Label
Load Immediate li R[rd] = immediate
Move move R[rd] = R[rs]

NAME NUMBER USE
PRESERVED ACROSS

A CALL?
\$zero 0 The Constant Value 0 N.A.
\$at 1 Assembler Temporary No

\$v0-\$v1 2-3
Values for Function Results
and Expression Evaluation

No

\$a0-\$a3 4-7 Arguments No
\$t0-\$t7 8-15 Temporaries No
\$s0-\$s7 16-23 Saved Temporaries Yes
\$t8-\$t9 24-25 Temporaries No
\$k0-\$k1 26-27 Reserved for OS Kernel No

\$gp 28 Global Pointer Yes
\$sp 29 Stack Pointer Yes
\$fp 30 Frame Pointer Yes
\$ra 31 Return Address Yes

1 2

M
IP

S
R

ef
er

en
ce

D
at

a
C

ar
d

(
“G

re
en

C
ar

d
”)

1.
P

ul
l a

lo
ng

p
er

fo
ra

ti
on

to
s

ep
ar

at
e

ca
rd

2.
F

ol
d

bo
tt

om
s

id
e

(c
ol

um
ns

3
a

nd
4

)
to

ge
th

er

FLOATING-POINT INSTRUCTION FORMATS

PSEUDOINSTRUCTION SET

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

(4) BranchAddr = { 14{immediate[15]}, immediate, 2’b0 }

’(6) Operands considered unsigned numbers (vs. 2 s comp.)

Argument 6
Argument 5

Saved Registers

Local Variables

OPCODES, BASE CONVERSION, ASCII SYMBOLS

(1) opcode(31:26) == 0
(2) opcode(31:26) == 17ten (11hex); if fmt(25:21)==16ten (10hex) f = s (single);
if fmt(25:21)==17ten (11hex) f = d (double)

STANDARD

(-1)S ! (1 + Fraction) ! 2(Exponent – Bias)

where Single Precision Bias = 127,
Double Precision Bias = 1023.

IEEE Single Precision and
Double Precision Formats:

MEMORY ALLOCATION

\$sp 7fff fffchex

\$gp 1000 8000hex

1000 0000hex

pc 0040 0000hex

0hex

DATA ALIGNMENT

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

EXCEPTION CODES

SIZE PREFIXES (10x for Disk, Communication; 2x for Memory)

The symbol for each prefix is just its first letter, except µ is used for micro.

MIPS
opcode
(31:26)

(1) MIPS
funct
(5:0)

(2) MIPS
funct
(5:0)

Binary
Deci-

mal

Hexa-
deci-
mal

ASCII
Char-
acter

Deci-
mal

Hexa-
deci-
mal

ASCII
Char-
acter

(1) sll add.f 00 0000 0 0 NUL 64 40 @
sub.f 00 0001 1 1 SOH 65 41 A

j srl mul.f 00 0010 2 2 STX 66 42 B
jal sra div.f 00 0011 3 3 ETX 67 43 C
beq sllv sqrt.f 00 0100 4 4 EOT 68 44 D
bne abs.f 00 0101 5 5 ENQ 69 45 E
blez srlv mov.f 00 0110 6 6 ACK 70 46 F
bgtz srav neg.f 00 0111 7 7 BEL 71 47 G
addi jr 00 1000 8 8 BS 72 48 H
addiu jalr 00 1001 9 9 HT 73 49 I
slti movz 00 1010 10 a LF 74 4a J
sltiu movn 00 1011 11 b VT 75 4b K
andi syscall round.w.f 00 1100 12 c FF 76 4c L
ori break trunc.w.f 00 1101 13 d CR 77 4d M
xori ceil.w.f 00 1110 14 e SO 78 4e N
lui sync floor.w.f 00 1111 15 f SI 79 4f O

mfhi 01 0000 16 10 DLE 80 50 P
(2) mthi 01 0001 17 11 DC1 81 51 Q

mflo movz.f 01 0010 18 12 DC2 82 52 R
mtlo movn.f 01 0011 19 13 DC3 83 53 S

01 0100 20 14 DC4 84 54 T
01 0101 21 15 NAK 85 55 U
01 0110 22 16 SYN 86 56 V
01 0111 23 17 ETB 87 57 W

mult 01 1000 24 18 CAN 88 58 X
multu 01 1001 25 19 EM 89 59 Y
div 01 1010 26 1a SUB 90 5a Z
divu 01 1011 27 1b ESC 91 5b [

01 1100 28 1c FS 92 5c
01 1101 29 1d GS 93 5d ]
01 1110 30 1e RS 94 5e ^
01 1111 31 1f US 95 5f _

lb add cvt.s.f 10 0000 32 20 Space 96 60 ‘
lh addu cvt.d.f 10 0001 33 21 ! 97 61 a
lwl sub 10 0010 34 22 ” 98 62 b
lw subu 10 0011 35 23 # 99 63 c
lbu and cvt.w.f 10 0100 36 24 \$ 100 64 d
lhu or 10 0101 37 25 % 101 65 e
lwr xor 10 0110 38 26 & 102 66 f

nor 10 0111 39 27 ’ 103 67 g
sb 10 1000 40 28 ( 104 68 h
sh 10 1001 41 29 ) 105 69 i
swl slt 10 1010 42 2a * 106 6a j
sw sltu 10 1011 43 2b + 107 6b k

10 1100 44 2c , 108 6c l
10 1101 45 2d – 109 6d m

swr 10 1110 46 2e . 110 6e n
cache 10 1111 47 2f / 111 6f o
ll tge c.f.f 11 0000 48 30 0 112 70 p
lwc1 tgeu c.un.f 11 0001 49 31 1 113 71 q
lwc2 tlt c.eq.f 11 0010 50 32 2 114 72 r
pref tltu c.ueq.f 11 0011 51 33 3 115 73 s

teq c.olt.f 11 0100 52 34 4 116 74 t
ldc1 c.ult.f 11 0101 53 35 5 117 75 u
ldc2 tne c.ole.f 11 0110 54 36 6 118 76 v

c.ule.f 11 0111 55 37 7 119 77 w
sc c.sf.f 11 1000 56 38 8 120 78 x
swc1 c.ngle.f 11 1001 57 39 9 121 79 y
swc2 c.seq.f 11 1010 58 3a : 122 7a z

c.ngl.f 11 1011 59 3b ; 123 7b {
c.lt.f 11 1100 60 3c < 124 7c | sdc1 c.nge.f 11 1101 61 3d = 125 7d } sdc2 c.le.f 11 1110 62 3e > 126 7e ~

c.ngt.f 11 1111 63 3f ? 127 7f DEL

S Exponent Fraction
31 30 23 22 0

S Exponent Fraction
63 62 52 51 0

Double Word
Word Word

Byte Byte Byte Byte Byte Byte Byte Byte
0 1 2 3 4 5 6 7

Value of three least significant bits of byte address (Big Endian)

B
D

Interrupt

Exception
Code

31 15 8 6 2

Pending
Interrupt

U
M

E
L

I
E

15 8 4 1 0

Number Name Cause of Exception Number Name Cause of Exception
0 Int Interrupt (hardware) 9 Bp Breakpoint Exception

(load or instruction fetch)

10 RI
Reserved Instruction

Exception

(store)
11 CpU

Coprocessor
Unimplemented

6 IBE
Bus Error on

Instruction Fetch
12 Ov

Arithmetic Overflow
Exception

7 DBE
Bus Error on

13 Tr Trap

8 Sys Syscall Exception 15 FPE Floating Point Exception

SIZE
PRE-
FIX SIZE

PRE-
FIX SIZE

PRE-
FIX SIZE

PRE-
FIX

103, 210 Kilo- 1015, 250 Peta- 10-3 milli- 10-15 femto-
106, 220 Mega- 1018, 260 Exa- 10-6 micro- 10-18 atto-
109, 230 Giga- 1021, 270 Zetta- 10-9 nano- 10-21 zepto-
1012, 240 Tera- 1024, 280 Yotta- 10-12 pico- 10-24 yocto-

3

Stack

Dynamic Data

Static Data

Text

Reserved

IEEE 754 Symbols

S.P. MAX = 255, D.P. MAX = 2047

Exponent Fraction Object
0 0 ± 0
0 “0 ± Denorm

1 to MAX – 1 anything ± Fl. Pt. Num.
MAX 0 ±#
MAX “0 NaN

STACK FRAME
Higher
Memory

Lower
Memory

Stack
Grows

\$sp

\$fp

4

M
IP

S
R

ef
er

en
ce

D
at

a
C

ar
d

(
“G

re
en

C
ar

d
”)

1.
P

ul
l a

lo
ng

p
er

fo
ra

ti
on

to
s

ep
ar

at
e

ca
rd

2.
F

ol
d

bo
tt

om
s

id
e

(c
ol

um
ns

3
a

nd
4

)
to

ge
th

er

IEEE 754 FLOATING-POINT

Halfword Halfword Halfword Halfword

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

Posted in Uncategorized