程序代写代做代考 sna

sna

In [1]:

import networkx as nx

import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from networkx.readwrite import json_graph
import json
%matplotlib inline

In [2]:

h = nx.read_gpickle(“graph.bin”)
print nx.info(h)

Name: ()
Type: DiGraph
Number of nodes: 4120
Number of edges: 4678
Average in degree: 1.1354
Average out degree: 1.1354

In [3]:

from operator import itemgetter
def getTopCentrality(centralityFun, h, n):
c = sorted(centralityFun(h).items(), key=itemgetter(1), reverse=True)

top = c[:n]

print(“| —— | —————– | ——————– |”)
for i, x in enumerate(top):
# print(“%i %10s %f” %(i+1, x[0], x[1]) )

print(“| %2i | %12s | %f |” %(i+1, x[0], x[1]))

return top

centraFun = [nx.degree_centrality, nx.in_degree_centrality,nx.out_degree_centrality, nx.betweenness_centrality, nx.closeness_centrality, nx.eigenvector_centrality, nx.pagerank]
names = [“Degree Centrality”, “In-degree Centrality”, “Out-degree Centrality”, “Betweenness Centrality”, “Closeness Centrality”, “Eigenvector Centrality”, “Pagerank”]
tops = []
for i in range(len(names)):
print(“| Rank | User name | %18s|” % names[i])
top = getTopCentrality(centraFun[i], h, 10)

print(“
”)

tops.append(top)

# getTopCentrality(nx.degree_centrality, h, 10)

| Rank | User name | Degree Centrality|
| —— | —————– | ——————– |
| 1 | angusshire | 0.267298 |
| 2 | batermj | 0.051712 |
| 3 | fly51fly | 0.043943 |
| 4 | nelsonic | 0.042000 |
| 5 | donnemartin | 0.027919 |
| 6 | daimajia | 0.025492 |
| 7 | trietptm | 0.021850 |
| 8 | galaris | 0.020636 |
| 9 | gauravssnl | 0.018208 |
| 10 | fperez | 0.017237 |

| Rank | User name | In-degree Centrality|
| —— | —————– | ——————– |
| 1 | donnemartin | 0.027919 |
| 2 | daimajia | 0.025492 |
| 3 | angusshire | 0.022578 |
| 4 | fperez | 0.017237 |
| 5 | amueller | 0.014324 |
| 6 | mrocklin | 0.013596 |
| 7 | Zulko | 0.013110 |
| 8 | ppwwyyxx | 0.011411 |
| 9 | pudo | 0.010439 |
| 10 | mahmoud | 0.009954 |

| Rank | User name | Out-degree Centrality|
| —— | —————– | ——————– |
| 1 | angusshire | 0.244720 |
| 2 | batermj | 0.050012 |
| 3 | fly51fly | 0.040787 |
| 4 | nelsonic | 0.035931 |
| 5 | trietptm | 0.018208 |
| 6 | galaris | 0.017723 |
| 7 | gauravssnl | 0.017480 |
| 8 | radovankavicky | 0.013838 |
| 9 | indrajithbandara | 0.008497 |
| 10 | vishalbelsare | 0.008012 |

| Rank | User name | Betweenness Centrality|
| —— | —————– | ——————– |
| 1 | angusshire | 0.025285 |
| 2 | nelsonic | 0.008361 |
| 3 | paulhendricks | 0.005906 |
| 4 | pranitbauva1997 | 0.005058 |
| 5 | baya | 0.004657 |
| 6 | hooopo | 0.004492 |
| 7 | tonyseek | 0.003691 |
| 8 | pirate | 0.002931 |
| 9 | batermj | 0.002700 |
| 10 | OrkoHunter | 0.002674 |

| Rank | User name | Closeness Centrality|
| —— | —————– | ——————– |
| 1 | angusshire | 0.259906 |
| 2 | batermj | 0.183126 |
| 3 | indrajithbandara | 0.168880 |
| 4 | paulhendricks | 0.167636 |
| 5 | radovankavicky | 0.167528 |
| 6 | fly51fly | 0.166674 |
| 7 | galaris | 0.161429 |
| 8 | trietptm | 0.158976 |
| 9 | cprogrammer1994 | 0.158735 |
| 10 | mcanthony | 0.158064 |

| Rank | User name | Eigenvector Centrality|
| —— | —————– | ——————– |
| 1 | donnemartin | 0.219502 |
| 2 | angusshire | 0.213775 |
| 3 | daimajia | 0.190127 |
| 4 | fperez | 0.133724 |
| 5 | pudo | 0.110548 |
| 6 | byt3bl33d3r | 0.108596 |
| 7 | Zulko | 0.104271 |
| 8 | mrocklin | 0.101942 |
| 9 | Miserlou | 0.101771 |
| 10 | amueller | 0.099386 |

| Rank | User name | Pagerank|
| —— | —————– | ——————– |
| 1 | daimajia | 0.010603 |
| 2 | mrocklin | 0.009026 |
| 3 | donnemartin | 0.008744 |
| 4 | fperez | 0.008304 |
| 5 | moskytw | 0.007320 |
| 6 | angusshire | 0.007087 |
| 7 | spitfire-sidra | 0.006225 |
| 8 | Zulko | 0.005374 |
| 9 | avikj | 0.004606 |
| 10 | amueller | 0.004512 |

In [4]:

commons = set()

for i in range(len(tops)):
commons = commons.union(set([x[0] for x in tops[i]]))

print(len(commons))

print(commons)

print(nx.eigenvector_centrality(h.subgraph(commons)))

print(“| Rank | User name | In-degree Centrality|” )
print(getTopCentrality(nx.in_degree_centrality, h.subgraph(commons), 10))

# nx.draw(h.subgraph(commons), with_labels = True)

# plt.savefig(‘labels.png’)

# save to json which can be visualized by d3.js
json.dump(json_graph.node_link_data(h.subgraph(commons)), open(‘importantnodes.json’, ‘w’))

33
set([u’byt3bl33d3r’, u’fperez’, u’OrkoHunter’, u’donnemartin’, u’moskytw’, u’daimajia’, u’batermj’, u’cprogrammer1994′, u’fly51fly’, u’mahmoud’, u’radovankavicky’, u’indrajithbandara’, u’paulhendricks’, u’ppwwyyxx’, u’Zulko’, u’hooopo’, u’baya’, u’Miserlou’, u’angusshire’, u’tonyseek’, u’pranitbauva1997′, u’pirate’, u’vishalbelsare’, u’mrocklin’, u’avikj’, u’amueller’, u’spitfire-sidra’, u’trietptm’, u’mcanthony’, u’nelsonic’, u’pudo’, u’galaris’, u’gauravssnl’])
{u’byt3bl33d3r’: 0.19719231271273835, u’hooopo’: 0.09450000023689209, u’donnemartin’: 0.3539009811713699, u’daimajia’: 0.16267415047168873, u’galaris’: 0.16910787668452737, u’cprogrammer1994′: 0.12915992525257552, u’fly51fly’: 0.17757265456849733, u’mahmoud’: 0.08382607808344876, u’radovankavicky’: 0.2234214325447363, u’indrajithbandara’: 0.0929665995746708, u’paulhendricks’: 0.2903715258243272, u’tonyseek’: 0.07663183566240735, u’mrocklin’: 0.11912972170797892, u’Zulko’: 0.14594240881909407, u’fperez’: 0.2841149892734136, u’baya’: 0.11662124560695658, u’Miserlou’: 0.1739575998910423, u’angusshire’: 0.32901399486558913, u’ppwwyyxx’: 0.12230052966009973, u’pranitbauva1997′: 0.16834587516223534, u’trietptm’: 0.17757971840802272, u’pirate’: 0.1657162657604965, u’vishalbelsare’: 0.13208976866920571, u’moskytw’: 0.07268429855953133, u’batermj’: 0.16932098147709398, u’amueller’: 0.10857192315214592, u’spitfire-sidra’: 0.07268429855953133, u’avikj’: 0.0, u’mcanthony’: 0.22312593285868107, u’nelsonic’: 0.22100600407913354, u’pudo’: 0.13059632639502589, u’OrkoHunter’: 0.08999353921630769, u’gauravssnl’: 0.07082891508865617}
| Rank | User name | In-degree Centrality|
| —— | —————– | ——————– |
| 1 | donnemartin | 0.312500 |
| 2 | angusshire | 0.312500 |
| 3 | paulhendricks | 0.250000 |
| 4 | fperez | 0.250000 |
| 5 | radovankavicky | 0.187500 |
| 6 | nelsonic | 0.187500 |
| 7 | byt3bl33d3r | 0.187500 |
| 8 | galaris | 0.156250 |
| 9 | mrocklin | 0.156250 |
| 10 | mcanthony | 0.156250 |
[(u’donnemartin’, 0.3125), (u’angusshire’, 0.3125), (u’paulhendricks’, 0.25), (u’fperez’, 0.25), (u’radovankavicky’, 0.1875), (u’nelsonic’, 0.1875), (u’byt3bl33d3r’, 0.1875), (u’galaris’, 0.15625), (u’mrocklin’, 0.15625), (u’mcanthony’, 0.15625)]

In [5]:

commons = set(h.nodes())

for i in [5, 6]:
commons = commons.intersection(set([x[0] for x in tops[i]]))

commons

Out[5]:

{u’Zulko’,
u’amueller’,
u’angusshire’,
u’daimajia’,
u’donnemartin’,
u’fperez’,
u’mrocklin’}

In [6]:

commons = set(h.nodes())

for i in [0, 2]:
commons = commons.intersection(set([x[0] for x in tops[i]]))

commons

Out[6]:

{u’angusshire’,
u’batermj’,
u’fly51fly’,
u’galaris’,
u’gauravssnl’,
u’nelsonic’,
u’trietptm’}

In [7]:

print(h.in_degree(u’donnemartin’))
print(h.out_degree(u’donnemartin’))

115
0

In [8]:

print(h.in_degree(u’daimajia’))
print(h.out_degree(u’daimajia’))

105
0

In [9]:

print(h.in_degree(u’angusshire’))

print(h.out_degree(u’angusshire’))

93
1008

In [10]:

print(h.in_degree(u’batermj’))
print(h.out_degree(u’batermj’))

7
206

In [11]:

nx.number_weakly_connected_components(h)

Out[11]:

2127

In [12]:

nx.number_strongly_connected_components(h)

Out[12]:

3764

In [13]:

wc = sorted(nx.weakly_connected_components(h), key = len, reverse=True)

In [14]:

print(nx.info(h.subgraph(wc[0])))

Name: ()
Type: DiGraph
Number of nodes: 1954
Number of edges: 4627
Average in degree: 2.3680
Average out degree: 2.3680

In [15]:

wcs = sorted(nx.strongly_connected_components(h), key = len, reverse=True)
print(nx.info(h.subgraph(wcs[0])))

Name: ()
Type: DiGraph
Number of nodes: 263
Number of edges: 919
Average in degree: 3.4943
Average out degree: 3.4943

In [16]:

print(len(wc))
lens = [len(x) for x in wc]
print(np.sum(np.array(lens) == 1))
print(lens[:10])

2127
2092
[1954, 4, 4, 3, 3, 2, 2, 2, 2, 2]

In [17]:

print(len(wcs))
lens = [len(x) for x in wcs]
print(np.sum(np.array(lens) == 1))
print(lens[:10])

3764
3702
[263, 7, 6, 6, 5, 5, 5, 4, 4, 3]

In [18]:

# nx.draw(h.subgraph(wcs[0]), with_labels=True)

# save to json which can be visualized by d3.js
json.dump(json_graph.node_link_data(h.subgraph(wcs[0])), open(‘largestStrongComponent.json’, ‘w’))

In [19]:

degrees =sorted(nx.degree(h).values(),reverse=True)

In [20]:

import matplotlib.pyplot as plt
# plt.hist(degrees, bins = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11, 12, 13, 14, 15, 20, 40, 100])

plt.hist(nx.degree(h).values(), bins = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])

plt.hist(nx.degree(h).values(), bins = list(range(11)))

plt.title(“Degree distribution”)
plt.xlabel(“Degree”)
plt.ylabel(“Number of nodes”)
# plt.hist(nx.degree(h).values())

Out[20]:

In [21]:

import numpy as np
degrees = np.array(nx.degree(h).values())
for i in range(11):
num = sum(degrees == i)
print(“| %d | %d |” %(i, num))

print(np.sum(np.array(nx.degree(h).values()) > 10))

# print(“| %d | %d |” %(i, num))

| 0 | 2092 |
| 1 | 847 |
| 2 | 422 |
| 3 | 219 |
| 4 | 135 |
| 5 | 95 |
| 6 | 63 |
| 7 | 37 |
| 8 | 34 |
| 9 | 32 |
| 10 | 21 |
123

In [22]:

# nx.neighbors(h, “donnemartin”)

# nx.neighbors(h, “angusshire”)

# h[“donnemartin”]

# h.has_edge(“angusshire”, “donnemartin”)

nodes = h.nodes()
pairs = []
for i in range(len(nodes)):
for j in range(i+1, len(nodes)):
if(h.has_edge(nodes[i], nodes[j]) and h.has_edge(nodes[j], nodes[i])):
pairs.append((nodes[i], nodes[j]))

print(len(pairs))

print(pairs[:10])

335
[(u’fffaraz’, u’1995parham’), (u’fffaraz’, u’Tabrizian’), (u’geekplux’, u’gaocegege’), (u’pdelong42′, u’nielssorensen’), (u’boliza’, u’geometrybase’), (u’sorra’, u’AndriyLin’), (u’ZeroCrystal’, u’riomus’), (u’ashubly25′, u’nelsonic’), (u’Marlysson’, u’pirate’), (u’Marlysson’, u’alephmelo’)]

In [23]:

plt.hist(h.in_degree().values(), bins = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])

Out[23]:

(array([ 44., 13., 1., 5., 3., 0., 1., 0., 1.]),
array([ 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]),
)

In [24]:

plt.hist(h.out_degree().values(), bins = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])

Out[24]:

(array([ 31., 3., 5., 0., 1., 0., 3., 0., 0.]),
array([ 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]),
)

In [25]:

plt.boxplot(nx.pagerank(h).values())

Out[25]:

{‘boxes’: [],
‘caps’: [,
],
‘fliers’: [],
‘means’: [],
‘medians’: [],
‘whiskers’: [,
]}

In [ ]:

Posted in Uncategorized

Leave a Reply

Your email address will not be published. Required fields are marked *