# CS代考 F71SM STATISTICAL METHODS – cscodehelp代写

F71SM STATISTICAL METHODS
Tutorial on Section 3 RANDOM VARIABLES: SOLUTIONS
1. μ=E[X]=1×0.5+2×0.25=1
E[X2]=12 ×0.5+22 ×0.25=1.5⇒s2 =Var[X]=1.5−12 =0.5 Pgf: G(t) = 0.25 + 0.5t + 0.25t2 = (1 + t)2/4
∞ 2x 2. μ=E[X]=e−2 􏰋x
E[X(X−1)]=e−2 􏰋x(x−1) x=0 x!
⇒ E[X2] = 4 + 2 = 6
⇒s2 =Var[X]=6−22 =2
x=0 x! x=0 x! Mgf: M (t) = G 􏰄et 􏰅 = exp 􏰄2 􏰄et − 1􏰅􏰅
∞ 2x−1 =2e−2 􏰋
∞2y
=2e−2 􏰋 =2e−2e2 =2
x=0 x!
∞ 2x
y=0 y!
x=1 (x−1)!
∞ 2x−2 =e−222 􏰋
∞2y =4e−2 􏰋
=4e−2e2 =4
􏰌􏰍∞ 2x ∞(2t)x Pgf:G(t)=E tX =􏰋txe−2 =e−2􏰋
y=0 y! =e−2e2t=e2(t−1)
x=2 (x − 2)!
3. The number of trials required will equal r provided trials 1, 2, 3, . . . , r − 1 consist of 1 S and (r−2) F’s, with trial r being S. Hence P (X = r) = 􏰄􏰄r−1􏰅pqr−2􏰅×p = (r−1)p2qr−2, r = 2, 3, . . .,
1
where q = 1−p, and so
G(t)=p2(t2 +2qt3 +3q2t4 +···)=p2t2(1−qt)−2 for−1/q0andt−1<0 2 t+1 −∞ 2 t−1 0 2(t+1) 2(t−1) = 1 for−10 ⇒ fY (y) = dFY (y) = 1 y−1/2fX (√y) + 1 y−1/2fX (−√y), y > 0 as required.
1􏰜11􏰛1
With the given pdf fX(x), we have fY (y) = 2y−1/2 √2πe−y/2 + √2πe−y/2 = √2π y−1/2e−y/2,
for y > 0.
dy2 2
2